
Decoupled Networks

Weiyang Liu1*, Zhen Liu1*, Zhiding Yu2, Bo Dai1, Rongmei Lin3, Yisen Wang1,4, James M. Rehg1, Le Song1,5

1Georgia Institute of Technology 2NVIDIA 3Emory University 4Tsinghua University 5Ant Financial

Abstract

Inner product-based convolution has been a central com-
ponent of convolutional neural networks (CNNs) and the
key to learning visual representations. Inspired by the
observation that CNN-learned features are naturally de-
coupled with the norm of features corresponding to the
intra-class variation and the angle corresponding to the se-
mantic difference, we propose a generic decoupled learn-
ing framework which models the intra-class variation and
semantic difference independently. Specifically, we first
reparametrize the inner product to a decoupled form and
then generalize it to the decoupled convolution operator
which serves as the building block of our decoupled net-
works. We present several effective instances of the de-
coupled convolution operator. Each decoupled operator is
well motivated and has an intuitive geometric interpreta-
tion. Based on these decoupled operators, we further pro-
pose to directly learn the operator from data. Extensive
experiments show that such decoupled reparameterization
renders significant performance gain with easier conver-
gence and stronger robustness.

1. Introduction
Convolutional neural networks have pushed the bound-

aries on a wide variety of vision tasks, including object
recognition [24, 25, 5], object detection [2, 23, 22], se-
mantic segmentation [16], etc. A significant portion of re-
cent studies on CNNs focused on increasing network depth
and representation ability via improved architectures such
as shortcut connections [5, 8] and multi-branch convolu-
tion [25, 30]. Despite these advances, understanding how
convolution naturally leads to discriminative representation
and good generalization remains an interesting problem.

Current CNNs often encode the similarity between a
patch x and a kernel w via inner product. The formu-
lation of inner product 〈w,x〉=w>x couples the seman-
tic difference (i.e., inter-class variation) and the intra-class
variation in one unified measure. As a result, when the in-
ner product between two samples is large, one can not tell

*Equal contributions. Email:{wyliu,liuzhen1994}@gatech.edu

0
1
2
3
4
5
6
7
8
9

Intra-Class Variation

Semantic/label Difference

Origin (0,0)

Figure 1: CNN learned features are naturally decoupled. These 2D features
are output directly from the CNN by setting the feature dimension as 2.

whether the two samples have large semantic/label differ-
ence or have large intra-class variation. In order to better
study the properties of CNN representation and further im-
prove existing frameworks, we propose to explicitly decou-
ple semantic difference and intra-class variation1. Specif-
ically, we reparametrize the inner product with the norms
and the angle, i.e., ‖w‖2‖x‖2 cos(θ(w,x)). Our direct intu-
ition comes from the the observation in Fig. 1 where angle
accounts for semantic/label difference and feature norm ac-
counts for intra-class variation. The larger the feature norm,
the more confident the prediction. Such naturally decoupled
phenomenon inspires us to propose the decoupled convolu-
tion operators. We hope that decoupling norm and angle in
inner product can better model the intra-class variation and
the semantic difference in deep networks.

On top of the idea to decouple the norm and the angle
in an inner product, we propose a novel decoupled net-
work (DCNet) by generalizing traditional inner product-
based convolution operators (‖w‖‖x‖ cos(θ(w,x))) to de-
coupled operators. To this end, we define such opera-
tor as multiplication of a function of norms h(‖w‖, ‖x‖)
and a function of angle g(θ(w,x)). The decoupled opera-
tor provides a generic framework to better model the intra-
class variation and the semantic difference, and the original
CNNs are equivalent to setting h(‖w‖, ‖x‖) as ‖w‖‖x‖

1Although the concepts of semantic difference and intra-class variation
often refer to classification, they are extended to convolutions in this pa-
per. Specifically, semantic difference means the pattern similarity between
local patch x and kernel w, while intra-class variation refers to the energy
of local patch x and kernel w.

and g(θ(w,x)) as cos(θ(w,x)). The magnitude function
h(‖w‖, ‖x‖) models the intra-class variation while the an-
gular function g(θ(w,x)) models the semantic difference.

From the decoupling point of view, the original CNNs
make a strong assumption that the intra-class variation can
be linearly modeled via the multiplication of norms and the
semantic difference is described by the cosine of the angle.
However, this modeling approach is not necessarily optimal
for all tasks. With the decoupled learning framework, we
can either design the decoupled operators based on the task
itself or learn them directly from data. The advantages of
DCNets are in four aspects. First, DCNets not only allow us
to use some alternative functions to better model the intra-
class variation and the semantic difference, but they also
enable us to directly learn these functions rather than fixing
them. Second, with bounded magnitude functions, DCNets
can improve the problem conditioning as analyzed in [14],
and therefore DCNets can converge faster while achieving
comparable or even better accuracy than the original CNNs.
Third, some instances of DCNets can have stronger robust-
ness against adversarial attacks. We can squeeze the fea-
ture space of each class with a bounded h(·), which can
bring certain robustness. Last, the decoupled operators are
very flexible and architecture-agnostic. They could be eas-
ily adapted to any kind of architectures such as VGG [24],
GoogleNet [25] and ResNet [5].

Specifically, we propose two different types of decou-
pled convolution operators: bounded operators and un-
bounded operators. We present multiple instances for each
type of decoupled operators. Empirically, the bounded op-
erators may yield faster convergence and better robustness
against adversarial attacks, and the unbounded operators
may have better representational power. These decoupled
operators can also be either smooth or non-smooth, which
can yield different behaviors. Moreover, we introduce a
novel concept - operator radius for the decoupled opera-
tors. The operator radius describes the critical change of
the derivative of the magnitude function h(·) with respect
to the input ‖x‖. By jointly learning the operator radius via
back-propagation, we further propose learnable decoupled
operators. Moreover, we show some alternative ways to
optimize these operators that improve upon standard back-
propagation. Our contributions can be summarized as:
• Inspired by the observation that CNN-learned features

are naturally decoupled, we propose an explicitly decou-
pled framework to study neural networks.

• We show that CNNs make a strong assumption to model
the intra-class and inter-class variation, which may not be
optimal. By decoupling the inner product, we are able to
design more effective magnitude and angular functions
rather than the original convolution for different tasks.

• In comparison to standard CNNs, DCNets have easier
convergence, better accuracy and stronger robustness.

2. Related Works
There are an increasing number of works [28, 21, 12, 13,

15, 29, 31, 10] that focus on improving the classification
layer in order to increase the discriminativeness of learned
features. [13] models the angular function for each class
differently and defines a more difficult task than classifi-
cation, improving the network generalization. Built upon
[13], [12] further normalizes the weights of the last fully
connected layer (i.e., classification layer) and reported im-
proved results on face recognition. [28, 21, 29] normalize
the input features before entering the last fully connected
layer, achieving promising performance on face recogni-
tion. However, these existing works can be viewed as
heuristic modifications and are often restricted to the last
fully connected layer. In contrast, the decoupled learning
provides a more general and systematic way to study the
CNNs. In our framework, the previous work can be viewed
as proposing a new magnitude function h(‖w‖, ‖x‖) or
angular function g(θ(w,x)) for the last fully connected
layer. For example, normalizing the weights is to let
h(‖w‖, ‖x‖) be ‖x‖ and normalizing the input is equiva-
lent to h(‖w‖, ‖x‖)=‖w‖.

[14] proposes a deep hyperspherical learning framework
which directly makes h(‖w‖, ‖x‖) equal to 1 such that
all the activation outputs only depend on g(θ(w,x)). The
framework provides faster convergence compared to the
original CNNs, but is somehow restricted in the sense that
h(‖w‖, ‖x‖) is only allowed to be 1, and therefore can be
sub-optimal in some cases. From the decoupling perspec-
tive, hyperspherical learning only cares about the semantic
difference and aims to compress the intra-class variation to
a space that is as small as possible, while the decoupled
framework focuses on both. As a non-trivial generalization
of [14], our decoupled network is a more generic and unified
framework to model both intra-class variation and semantic
difference, providing the flexibility to design or learn both
magnitude function h(·) and angular function g(·).

3. Decoupled Networks
3.1. Reparametrizing Convolution via Decoupling

For a conventional convolution operator f(·, ·), the out-
put is calculated by the inner product of the input patch x
and the filter w (both x and w are vectorized into columns):

f(w,x) = 〈w,x〉 = w>x, (1)

which can be further formulated as a decoupled form that
separates the norm and the angle:

f(w,x) = ‖w‖ ‖x‖ cos(θ(w,x)), (2)

where θ(w,x) is the angle between x and w. Our proposed
decoupled convolution operator takes the general form of

fd(w,x) = h(‖w‖ , ‖x‖) · g(θ(w,x)), (3)

which explicitly decouples the norm of w,x and the angle
between them. We define h(‖w‖, ‖x‖) as the magnitude
function and g(θ(w,x)) as the angular activation function. It
is easy to see that the decoupled convolution operator in-
cludes the original convolution operator as a special case.
As illustrated in Fig. 1, the semantic difference and intra-
class variation are usually decoupled and very suitable for
this formulation. Based on the decoupled operator, we pro-
pose several alternative ways to model the semantic differ-
ence and intra-class variation.

3.2. Decoupled Convolution Operators

We discuss how to better model the intra-class variation,
and then give a few instances of the decoupled operator.

3.2.1 On Better Modeling of the Intra-class Variation
Hyperspherical learning [14] has discussed the model-

ing of the inter-class variation (i.e., the angular function).
The design of angular function g(·) is relatively easy but
restricted, because it only takes the angle as input. In con-
trast, the magnitude function h(·) takes the norm of w and
the norm of x as two inputs, and therefore it is more com-
plicated to design. ‖w‖ is the intrinsic property of a ker-
nel itself, corresponding to the importance of the kernel
rather than the intra-class variation of the inputs. Therefore,
we tend not to include ‖w‖ into the magnitude function
h(·). Moreover, removing ‖w‖ from h(·) indicates that all
kernels (or operators) are assigned with equal importance,
which encourages the network to make decision based on as
many kernels as possible and therefore may make the net-
work generalize better. However, incorporating the kernel
importance to the network learning can improve the rep-
resentational power and may be useful when dealing with
a large-scale dataset with numerous categories. By com-
bining ‖w‖ back to h(·), the operators become weighted
decoupled operators. There are multiple ways of incorpo-
rating ‖w‖ back to the magnitude function. We will discuss
and empirically evaluate these variants later.

3.2.2 Bounded Decoupled Operators
The output of the bounded operators must be bounded by

a finite constant regardless of its input and kernel, namely
|fd(w,x)|≤cwhere c is a positive constant. For simplicity,
we first consider the decoupled operator without the norm
of the weights (i.e., ‖w‖ is not included in h(·)).
Hyperspherical Convolution. If we let h(‖w‖ , ‖x‖)=α,
we will have the hyperspherical convolution (SphereConv)
with the following decoupled form:

fd(w,x) = α · g(θ(w,x)), (4)

where α>0 controls the output scale. g(θ(w,x)) depends
on the geodesic distance on the unit hypersphere and typ-
ically outputs value from −1 to 1, so the final output is

in [−α, α]. Usually, we can use α=1, which reduces to
SphereConv [14] in this case. Geometrically, SphereConv
can be viewed as projecting w and x to a hypersphere and
then performing inner product (if g(θ)=cos(θ)). Based
on [14], SphereConv improves the problem conditioning in
neural networks, making the network converge better.
Hyperball Convolution. The hyperball convolution (Ball-
Conv) uses h(‖w‖ , ‖x‖)=αmin(‖x‖ , ρ)/ρ as its magni-
tude function. The specific form of the BallConv is

fd(w,x) = α · min(‖x‖ , ρ)

ρ
· g(θ(w,x)), (5)

where ρ controls the saturation threshold for the input norm
‖x‖ and α scales the output range. When ‖x‖ is larger than
ρ, then the magnitude function will be saturate and output
α. When ‖x‖ is smaller than ρ, the magnitude function
grows linearly with ‖x‖. Geometrically, BallConv can be
viewed as projecting w to a hypersphere and projecting the
input x to a hyperball, and then performing the inner prod-
uct (if g(θ)=cos(θ)). Intuitively, BallConv is more robust
and flexible than SphereConv in the sense that SphereConv
may amplify the x with very small ‖x‖, because x with
small ‖x‖ and the same direction as w could still produce
the maximum output. It makes SphereConv sensitive to per-
turbations to x with small norm. In contrast, BallConv will
not have such a problem, because the multiplicative factor
‖x‖ can help to decrease the output if ‖x‖ is small. More-
over, small ‖x‖ indicates that the local patch is not informa-
tive and should not be emphasized. In this sense, BallConv
is better than SphereConv. In terms of convergence, the
BallConv can still help the network convergence because
its output is bounded with the same range as SphereConv.
Hyperbolic Tangent Convolution. We present a smooth
decoupled operator with bounded output called hyperbolic
tangent convolution (TanhConv). The TanhConv uses a hy-
perbolic tangent function to replace the step function in the
BallConv and can be formulated as

fd(w,x) = α tanh
(‖x‖
ρ

)
· g(θ(w,x)), (6)

where tanh(·) denotes the hyperbolic tangent function and
ρ is parameter controlling the decay curve. The TanhConv
can be viewed as a smooth version of BallConv, which not
only shares the same advantages as BallConv but also has
more convergence gain due to its smoothness [1].

3.2.3 Unbounded Decoupled Operators
Linear Convolution. One of the simplest unbounded de-
coupled operators is the linear convolution (LinearConv):

fd(w,x) = α ‖x‖ · g(θ(w,x)), (7)

where α controls the output scale. LinearConv differs the
original convolution in the sense that it projects the weights
to a hypersphere and has a parameter to control the slope.

Inner Product
based Convolution

w
x2

w
x1 x2x1

Hyperspherical
Convolution

Hyperball
Convolution

Segmented
Convolution

w
x2x1

w
x2x1

Linear
Convolution

w
x2x1

Logarithm
Convolution

w
x2x1

Hyperbolic Tangent
Convolution

w
x2x1

Mixed
Convolution

w
x2x1

Figure 2: Geometric interpretations for decoupled convolution operators.
Green denotes the original vectors, and red denotes the projected vectors.

Segmented Convolution. We propose a segmented convo-
lution (SegConv) which takes the following form:

fd(w,x) =

{
α ‖x‖ · g(θ(w,x)), 0 ≤ ‖x‖ ≤ ρ
(β ‖x‖+ αρ− βρ) · g(θ(w,x)), ρ < ‖x‖ , (8)

where α controls the slope when ‖x‖≤ρ and β controls the
slope when ‖x‖>ρ. ρ is the change point of the gradient
of the magnitude function w.r.t. ‖x‖. SegConv is a flexi-
ble multi-range linear function corresponding to ‖x‖. Both
LinearConv and BallConv are special cases of SegConv.
Logarithm Convolution. We present another smooth de-
coupled operator with unbounded output, logarithm convo-
lution (LogConv). LogConv uses a Logarithm function for
the norm of the input ‖x‖ and can be formulated as

fd(w,x) = α log(1 + ‖x‖) · g(θ(w,x)), (9)

where α controls the base of logarithm and is used to adjust
the curvature of the logarithm function.
Mixed Convolution. Mixed convolution (MixConv) com-
bines multiple decoupled convolution operators and enjoys
better flexibility. Because the mixed convolution has many
possible combinations, we only consider the additive com-
bination of LinearConv and LogConv as an example:

fd(w,x) =
(
α ‖x‖+ β log(1 + ‖x‖)

)
· g(θ(w,x)), (10)

which combines LogConv and LinearConv, becoming more
flexible than both original operators.

3.2.4 Properties of Decoupled Operators
Operator Radius. Operator radius is defined to describe
the gradient change point of the magnitude function. Oper-
ator radius differentiates two stages of the magnitude func-
tion. The two stages usually have different gradient ranges
and therefore behave differently during optimization. We
let ρ denote the operator radius in each decoupled operator.
For BallConv, when ‖x‖ is smaller than ρ, the magnitude
function will be activated and it will grow with ‖x‖ linearly.
When ‖x‖ is larger than ρ, then the magnitude function will
be deactivated and output a constant. For SegConv, ‖x‖=ρ

is the change point of the magnitude function’s slope. The
operator radius of some decoupled operators (SphereConv,
LinearConv, LogConv) is defined to be zero, indicating that
they have no operator radius. The decoupled operator with
non-zero operator radius is similar to a gated operator where
‖x‖=ρ serves as the switch.
Boundedness. The Boundedness of a decoupled opera-
tor may affect its convergence speed and robustness. [14]
shows that using a bounded operator can improve the con-
vergence due to two reasons. First, bounded operators lead
to better problem conditioning in training a deep network
via stochastic gradient descent. Second, bounded operators
make the variance of the output small and partially address
the internal covariate shift problem. The bounded opera-
tors can also constrain the Lipschitz constant of a neural
network, making the entire network more smooth. The Lip-
schitz constant of a neural network is shown to be closely
related to its robustness against adversarial perturbation [7].
In contrast, the unbounded operators may have stronger ap-
proximation power and flexibility than the bounded ones.
Smoothness. The smoothness of the magnitude function
is closely related to the approximation ability and the con-
vergence behavior. In general, using a smooth magnitude
function could have better approximation rate [17] and may
also lead to more stable and faster convergence [1]. How-
ever, a smooth magnitude function may also be more com-
putationally expensive, since it could be more difficult to
approximate a smooth function with polynomials.

3.3. Geometric Interpretations

All the decoupled convolution operators have very clear
geometric interpretations, as illustrated in Fig. 2. Because
all decoupled operators normalize the kernel weights, all the
weights are already on the unit hypersphere. SphereConv
also projects the input vector x on the unit hypersphere and
then computes the similarity between w and x based on
the geodesic distance on the hypersphere (multiplied by a
scaling factor α). Therefore, its output is bounded from
−α to α and only depends on the directions of w and x
(suppose g(θ(w,x)) is in the range of [−1, 1]).

BallConv first projects the input vector x to a hyperball
and then computes the similarity based on the projected x
inside the hyperball and the normalized w on surface of the
hyperball. Specifically, BallConv projects x to the hyper-
sphere if ‖x‖>ρ. TanhConv is a smoothed BallConv and
has similar geometric interpretation, but TanhConv is differ-
entible everywhere and has soft boundary around the opera-
tor radius ‖x‖=ρ. TanhConv can be viewed as performing
projection to a soft hyperball.

SegConv is more flexible than both SphereConv and
BallConv. By using certain parameters, SegConv can re-
duce to either SphereConv or BallConv. SegConv essen-
tially adjusts the norm of the input x with a multi-range lin-

0 0.5 1 1.5 2
Norm of the input x

0

0.5

1

1.5

O
ut

pu
t o

f t
he

 m
ag

ni
tu

de
 fu

nc
tio

n

SphereConv
BallConv
TanhConv
LinearConv
SegConv
LogConv

0 0.5 1 1.5 2 2.5 3
Angle between the kernel and the input

-1

-0.5

0

0.5

1

O
ut

pu
t o

f t
he

 a
ng

ul
ar

 a
ct

iv
at

io
n Cosine

Linear
Sigmoid (k=0.3)
Sigmoid (k=0.7)
Square Cosine

Figure 3: Magnitude function (ρ=1) and angular activation function.

ear multiplicative factor. Geometrically, such a factor will
either push the vector close to the hypersphere or away from
the hypersphere depending on the selection of α and β. For
example, we consider the case where α=1 and 0<β<1.
When ‖x‖≤ρ, the magnitude function h(·) in SegConv will
directly output ‖x‖. When ‖x‖>ρ, h(·) in SegConv will
output a value smaller than ‖x‖, as shown in Fig. 2.

LinearConv is the simplest unbounded operator and its
magnitude function grows linearly with ‖x‖. When α=1,
the magnitude function h(·) in LinearConv simply outputs
‖x‖, which does not perform any projection.

LogConv use a logarithm function to transform the norm
of the input x. After such nonlinear transformation on x,
LogConv computes similarity based on the transformed in-
put x and the normalized weights on a hypersphere.

3.4. Design of the Angular Activation Function

The design of the angular function g(θ(w,x)) mostly fol-
lows the deep hyperspherical learning [14]. We use four
different types of g(θ(w,x)) in this paper. The linear angu-
lar activation is defined as

g(θ(w,x)) = − 2

π
θ(w,x) + 1, (11)

whose output grows linearly with the angle θ(w,x). The co-
sine angular activation is defined as

g(θ(w,x))=cos(θ(w,x)), (12)

which is also used by the original convolution operator.
Moreover, the sigmoid angular activation is defined as

g(θ(w,x)) =
1 + exp(− π

2k
)

1− exp(− π
2k

)
·

1− exp(
θ(w,x)

k
− π

2k
)

1 + exp(
θ(w,x)

k
− π

2k
)
, (13)

where k controls the curvature. Additionally, we also pro-
pose a square cosine angular activation function:

g(θ(w,x)) = sign(cos(θ)) · cos2(θ), (14)

which can encourage a degree of angular margin near the
decision boundary and may improve network generaliza-
tion. In addition to fixing these angular activations prior
to training, we can also jointly learn the parameter k in
the sigmoid activation using back-propagation, which is a
learnable angular activation [14]. Fig. 3 shows the curves
of these angular activation functions.

3.5. Weighted Decoupled Operators

All the decoupled operators we have discussed normal-
ize the kernel weights w and the magnitude functions do
not take the weights into consideration. Although empir-
ically we find that the standard decoupled operators work
better than the weighted ones in most cases, we still con-
sider weighted decoupled operators, which incorporate ‖w‖
into the magnitude function, in order to improve the oper-
ator’s flexibility. We propose two straightforward ways to
combine ‖w‖: linear and nonlinear.
Linearly Weighted Decoupled Operator. Similar to the
original inner produce-based convolution, we can directly
multiply the norm of weights into the magnitude function,
which makes the decoupled operators linearly weighted.
For example, SphereConv will become fd(w,x) = α‖w‖ ·
g(θ(w,x)). Notably, linearly weighted LinearConv will be-
come the original inner produce-based convolution.
Nonlinearly Weighted Decoupled Operator. Compared
to linearly weighted decoupled operators, the norm of the
weights are incorporated into the magnitude function in a
nonlinear way. Taking TanhConv as an example, we could
formulate the nonlinearly weighted TanhConv as

fd(w,x) = α tanh(
1

ρ
‖x‖ · ‖w‖) · g(θ(w,x)). (15)

We can also formulate the nonlinearly weighted TanhConv
in an alternative way:

fd(w,x) = α tanh(
1

ρ
‖w‖) · tanh(

1

ρ
‖x‖) · g(θ(w,x)). (16)

The first nonlinearly weighted formulation couples ‖x‖ and
‖w‖ by multiplication and then perform a nonlinear trans-
formation, while the second one performs nonlinear trans-
formations separately for ‖x‖ and ‖w‖, and then multiplies
them. In practice, the linearly weighted operators are fa-
vored over nonlinearly weighted ones due to the simplicity.

3.6. Learnable Decoupled Operators

Because our decoupled operators usually have hyperpa-
rameters, we usually need to do cross-validation in order to
choose suitable parameters, which is time-consuming and
sub-optimal. To address this, we can learn these parameters
jointly with network weight training via back-propagation.
We propose learnable decoupled operators which perform
hyperparameter learning with h(·) and g(θ(w,x)). For ex-
ample, [14] proposed to learn the hyperparameters of sig-
moid angular function. By making both h(‖w‖, ‖x‖) and
g(θ(w,x)) learnable, we can greatly enhance the representa-
tional power and flexibility.

However, making the decoupled operators too flexible
(i.e., too many learnable parameters) may require a pro-
hibitive amount of training data to achieve good gener-
alization. In order to achieve an effective trade-off, we

only investigate learning the operator radius ρ via back-
propagation during the network training.

4. Improving the Optimization for DCNets
We propose several tricks to improve the optimization of

DCNets and enable DCNets to converge to a better local
minima. More analysis and discussion of weight projection
and weight gradients are provided in Appendix G.

4.1. Weight Projection
The forward pass of DCNets is not dependent on the

norm of the weights ‖w‖, because the decoupled operators
take the normalized weights as input. However, ‖w‖ will
significantly affect the backward pass. Taking SphereConv
as an example, we compute the gradient w.r.t. w:

∂

∂w

(
ŵ>x̂

)
=

x̂− ŵ>x̂ · ŵ
‖w‖ , (17)

where ŵ=w/ ‖w‖ and x̂=x/ ‖x‖. In comparison, ‖w‖
will not affect the gradient w.r.t w in inner product. From
Eq. (17), large ‖w‖ can make the gradients very small so
that the backward pass is not able to update the weights
effectively. To address this issue, we propose weight pro-
jection to control the norm of the weights. Weight projec-
tion performs w←s ·ŵ every certain number of iterations
where ← denotes the replacement operation. s is a posi-
tive constant which controls the norm of the gradient (we
use s=1 in our experiments). In general, larger s leads
to smaller gradients. Note that, weight projection cannot
be used in the weighted decoupled operators, because ‖w‖
will affect the forward pass. We can only apply weight pro-
jection to our standard decoupled operators.

4.2. Weighted Gradients
From Eq. (17), we observe that we could simply multi-

ply ‖w‖ to Eq. (17) to eliminate the effect of ‖w‖ on the
backward pass. We update the weights with the following:

∆w = ‖w‖ · ∂
∂w

(
ŵ>x̂

)
= x̂− ŵ>x̂ · ŵ, (18)

which does not depend on ‖w‖ and is called weighted gra-
dients. Using the proposed weighted gradients for back-
propagation, we can also prevent the gradients from being
affected by the norm of the weights.

4.3. Pretraining as a Better Initialization
We find that DCNets may sometimes be trapped into

a bad local minima and yield a less competitive accuracy
while trained on large-scale datasets (e.g., ImageNet). Be-
cause the decoupled operators have stronger nonlinearity,
its loss landscape may be more complex than the original
convolution. The most straightforward way to improve the
optimization is to use a better initialization. To this end, we
use a CNN model that has the same structure and is pre-
trained on the same training set to initialize the DCNet.

5. Discussions
Why Decoupling? Decoupling the intra-class and inter-
class variation gives us the flexibility to design better mod-
els that are more suitable for a given task. Inner product-
based convolution is computationally attractive but not nec-
essarily optimal. The original convolution makes an as-
sumption that the intra-class and inter-class variations are
modeled by h(‖w‖, ‖x‖)=‖w‖‖x‖ and g(θ)=cos(θ), re-
spectively. Such assumptions may not be optimal. h(·) and
g(·) can be task-driven in our novel decoupled framework.
Flexibility of Decoupled Operators. There are numerous
design options for the magnitude and angular function. The
original convolution can be viewed as a special decoupled
operator. Moreover, we can parametrize a decoupled op-
erator with a few learnable parameters and learn them via
back-propagation. However, there is a delicate tradeoff be-
tween the size of the training data, the generalization of the
network and the flexibility of the decoupled operator. Gen-
erally, given a large enough dataset, the network generaliza-
tion improves with more learnable parameters.
A Unified Learning Framework for CNNs. The decou-
pled formulation provides a unified learning framework for
CNNs. Consider a standard CNN with ReLU, we write the
convolution and ReLU as max(0, ‖w‖‖x‖ cos(θ)) which
can be written as ‖w‖‖x‖·max(0, cos(θ)). Such for-
mulation can be viewed as a decoupled operator where
h(‖w‖, ‖x‖)=‖w‖‖x‖ and g(θ)=max(0, cos(θ)). We
can jointly consider the convolution operator and nonlin-
ear activation in the decoupled framework. It is possible
to learn one single function g(·) that represents both angu-
lar activation and the nonlinearity, which is why the square
cosine angular activation works well without ReLU.
Network Regularization. In most instances of DCNets,
the `2 weight decay is no longer suitable. [14] uses an or-
thonormal constraint ‖W>W −I‖2F to regularize the net-
work, where W is the weight matrix whose columns are the
kernel weights and I is identity matrix. We also propose an
orthogonal constraint ‖W>W −diag(W>W)‖2F .
Network Architecture. Due to the non-linear nature of
DCNet, the performance of specific h(·) and g(·) is depen-
dent on the choice of architecture. An interesting challenge
for future work is to inverstigate the link between the archi-
tecture and the choise of h(·) and g(·).

6. Experiments and Results
General. We evaluate both accuracy and robustness of DC-
Nets on objection recognition. For all decoupled operators,
we use the standard softmax loss if not otherwise specified.
Training. The architecture for each task and the training
details are given in Appendix A. For CIFAR, the network
is trained by ADAM with 128 batch size. The learning rate
starts from 0.001. For ImageNet, we use SGD with momen-
tum 0.9 and batch size 40. The learning rate starts from 0.1.

For adversarial attacks, the networks are trained by ADAM.
All learning rates are divided by 10 when the error plateaus.
Implementation Details. For all decoupled operators that
have non-zero operator radius (i.e., ρ 6=0), we will learn the
operator radius from the training data via back-propagation.
More details are provided in Appendix B.

6.1. Object Recognition
6.1.1 CIFAR-10 and CIFAR-100
Weighted Decoupled Operators. We first compare the
weighted decoupled operators and the standard ones. Be-
cause the weights are incorporated into the forward pass in
the weighted decoupled operators, the optimization tricks
like weight projection and weighted gradients are not ap-
plicable. Therefore, the weighted operators simply use the
conventional gradients to perform back-propagation. For
standard decoupled operators, we show the results using
standard optimization, weight projection and weight gradi-
ents. From the results of TanhConv in Table 1, weighted
decoupled operators do not show obvious advantages.

Method Error

Linearly Weighted Decoupled Operator 22.95
Nonlinearly Weighted Decoupled Operator (Eq. (15)) 23.03
Nonlinearly Weighted Decoupled Operator (Eq. (16)) 23.38

Decoupled Operator (Standard Gradients) 23.09
Decoupled Operator (Weight Projection) 21.17

Decoupled Operator (Weighted Gradients) 21.45

Table 1: Evaluation of weighted operators (TanhConv) on CIFAR-100.

Optimization Tricks. We propose weight projection and
weighted gradients to facilitate the optimization of DCNets.
These two tricks essentially amplify the original gradient
and make the backward update more effective. From Ta-
ble 1, we observe that both weight projection and weighted
gradients work much better than the competing methods.

Method Linear Cosine Sq. Cosine

CNN Baseline - 35.30 -
LinearConv 33.39 31.76 N/C
TanhConv 32.88 31.88 34.26
SegConv 34.69 30.34 N/C

Table 2: Testing error (%) of plain CNN-9 without BN on CIFAR-100.
“N/C” indicates that the model can not converge. “-” denotes no result.
The results of different columns belong to different angular activation.

Learning without Batch Normalization. Batch Normal-
ization (BN) [9] is usually crucial for training a well-
performing CNN, but the results in Table 2 show that our
decoupled operators can perform much better than the orig-
inal convolution even without BN.
Learning without ReLU. Our decoupled operators natu-
rally have strong nonlinearity, because our decoupled con-
volution is no longer a linear matrix multiplication. In Ta-
ble 3, square cosine angular activation works extremely well
in plain CNN-9, even better than the networks with ReLU.
The results show that using suitable h(·) and g(·) can lead

to significantly better accuracy than the baseline CNN with
ReLU, even if our DCNet does not use ReLU at all.

Method
Cosine

w/o ReLU
Sq. Cosine
w/o ReLU

Cosine
w/ ReLU

Sq. Cosine
w/ ReLU

Baseline 58.24 - 26.01 -
SphereConv 33.31 25.90 26.00 26.97

BallConv 31.81 25.43 25.18 26.48
TanhConv 32.27 25.27 25.15 26.94

LinearConv 36.49 24.36 24.81 25.14
SegConv 33.57 24.29 24.96 25.04
LogConv 33.62 24.91 25.17 25.85
MixConv 33.46 24.93 25.27 25.77

Table 3: Testing error rate (%) of plain CNN-9 on CIFAR-100. Note that,
BN is used in all compared models. Baseline is the original plain CNN-9.

Comparison among Different Decoupled Operators. We
compare different decoupled operators on both plain CNN-
9 and ResNet-32. All the compared decoupled operators
are unweighted and use weight projection during optimiza-
tion. The standard softmax loss and BN are used in all net-
works. For plain CNN-9, we compare the case with and
without ReLU. The results in Table 3 show that DCNets
significantly outperform the baseline. In particular, our DC-
Net with SegConv and square cosine can achieve 24.29%
even without ReLU, which is even better than the networks
with ReLU. For ResNet-32, our DCNets also consistently
outperform the baseline with a considerable margin. The
results further verify that the intra-class and inter-class vari-
ation assumptions of the original CNN are not optimal.

Method Linear Cosine Sq. Cosine

ResNet Baseline - 26.69 -
SphereConv 21.79 21.44 24.40

BallConv 21.44 21.12 24.31
TanhConv 21.6 21.17 24.77

LinearConv 21.09 22.17 21.31
SegConv 20.86 20.91 20.88
LogConv 21.84 21.08 22.86
MixConv 21.02 21.28 21.81

Table 4: Testing error rate (%) of ResNet-32 on CIFAR-100.

1 2 3 4
x104

0

0.2

0.4

0.6

0.8

ResNet-32 Baseline
TanhConv (Weigt Projection)
TanhConv (Original Gradient)
LinearConv (Weight Projection)

Iteration

Te
st

in
g

A
cc

ur
ac

y

Figure 4: Convergence.

Convergence. We also eval-
uate the convergence of DC-
Nets using the architecture
of ResNet-32. The conver-
gence curves in Fig. 4 show
that the decoupled opera-
tors are able to converge and
generalize better than origi-
nal convolution operators on
CIFAR-100 dataset.

Method CIFAR-10 CIFAR-100

ResNet-110-original [5] 6.61 25.16
ResNet-1001 [6] 4.92 22.71

ResNet-1001 (64 mini-batch size) [6] 4.64 -
DCNet-32 (TanhConv + Cosine) 4.75 21.12

DCNet-32 (LinearConv + Sq. Cos.) 5.34 20.23

Table 5: Comparison to the state-of-the-art on CIFAR-10 and CIFAR-100.

Comparison to the state-of-the-art. Table 5 shows that
our DCNet-32 has very competitive accuracy compared to
ResNet-1001. In order to achieve best accuracy, we use the
weight-normalized softmax loss [14]. We also find that us-
ing SGD further improves the accuracy of DCNets. Experi-
ments on SGD-trained models are provided in Appendix F.

6.1.2 ImageNet-2012
Standard ResNet. We first evaluate the DCNets with the
standard ResNet-18. All presented decoupled operators use
the cosine angular activation. [14] shows that SphereConv
can perform comparably to the baseline on ImageNet only
when the network is wide enough. Using the weight pro-
jection and pretrained model initialization, SphereConv is
comparable to the baseline even on narrow networks. Most
importantly, TanhConv and LinearConv achieve better ac-
curacy than the baseline ResNet. The learned filters of DC-
Nets on ImageNet are also provided in Appendix E.
Modified ResNet. We also evaluate decoupled opera-
tors with a modified ResNet, similar to SphereFace net-
works [12], to better show the advantages of decoupled op-
erators. DCNets can be trained from scratch and outperform
the baseline by 1%. Moreover, DCNets can converge stably
in very challenging scenarios. From Table 6, we observe
that DCNets can converge to a decent accuracy without BN,
while the baseline model fails to converge without BN.

Method
Standard

ResNet-18
w/ BN

Modified
ResNet-18

w/ BN

Modified
ResNet-18

w/o BN

Baseline 12.63 12.10 N/C
SphereConv 12.68* 11.55 13.30
LinearConv 11.99* 11.50 N/C
TanhConv 12.47* 11.10 12.79

Table 6: Center-crop Top-5 error (%) of standard ResNet-18 and modified
ResNet-18 on ImageNet-2012. * indicates we use the pretrained model of
original CNN on ImageNet-2012 as initialization (see Section 4.3).

6.2. Robustness against Adversarial attacks
We evaluate the robustness of DCNets. DCNets in this

subsection use standard gradients and are trained without
any optimization trick. Fast gradient sign method (FGSM)
[3] and basic iterative method (BIM) [11] are used to attack
the networks. Experimental details and more experiments
are given in Appendix A and Appendix C, respectively.

6.2.1 White-box Adversarial Attacks
We run white-box attacks on both naturally trained mod-

els and FGSM-trained models on CIFAR-10 (results shown
in Table 7). “None” attacks mean that all the testing sam-
ples are normal. For naturally trained models, all DC-
Net variants show significantly better robustness over the
baseline, with naturally trained TanhConv being most resis-
tant. With adversarial training, while DCNets achieve the
best robustness, SphereConv is particularly resistant against
BIM attack. We speculate that the tight spherical constraint

strongly twists the data manifold so that the adversarial gra-
dient updates can only result in small gains.

Target models
Attack Baseline SphereConv BallConv TanhConv

None 85.35 88.58 91.13 91.45
FGSM 18.82 43.64 50.47 52.60
BIM 8.67 8.89 7.74 10.18
None 83.70 87.41 87.47 87.54

FGSM 78.96 85.98 82.20 81.46
BIM 7.96 35.07 17.38 19.86

Table 7: White-box attacks on CIFAR-10. Performance is measured in
accuracy (%). The first three rows are results of naturally trained models,
and the last three rows are results of adversarially trained models.

Target models
Attack Baseline SphereConv BallConv TanhConv

None 85.35 88.58 91.13 91.45
FGSM 50.90 56.71 49.50 50.61
BIM 36.22 43.10 27.48 29.06

None 83.70 87.41 87.47 87.54
FGSM 77.57 76.29 78.67 80.38
BIM 78.55 77.79 80.59 82.47

Table 8: Black-box attacks on CIFAR-10. Performance is measured in
accuracy (%). The first three rows are results of naturally trained models,
and the last three rows are results of adversarially trained models.

6.2.2 Black-box Adversarial Attacks
We run black-box attacks on naturally-trained and

FGSM-trained models on CIFAR-10 (see Table 8). With
natural training, it is surprising that BallConv and Tan-
hConv do not show an advantage over the baseline, while
SphereConv performs the best. The strongly nonlinear land-
scape of BallConv and TanhConv may be too difficult to be
optimized without adversarial training. SphereConv, with
a tighter geometric constraint, is able to withstand adver-
sarial attacks without adversarial training. With adversar-
ial training, SphereConv is less resistant against adversarial
attacks than the baseline. BallConv and TanhConv, how-
ever, show significant advantage over the baseline. Our ob-
servation that adversarial training compromises the robust-
ness of SphereConv matches the conclusion made by [27].
Since SphereConv enforces a tight constraint of output vec-
tors, the landscape around some data points will be dramat-
ically changed during adversarial training. BallConv and
TanhConv are less constrained and thus can fit adversarial
examples without detrimental changes in the landscapes.

7. Concluding Remarks
This paper proposes a decoupled framework for learning

neural networks. The decoupled formulation enables us to
design or learn better decoupled operators than the original
convolution. We argue that standard CNNs do not constitute
an optimal decoupled design in general.
Acknowledgements. The project was supported in part by NSF IIS-
1218749, NSF Award BCS-1524565, NIH BIGDATA 1R01GM108341,
NSF CAREER IIS-1350983, NSF IIS-1639792 EAGER, NSF CNS-
1704701, ONR N00014-15-1-2340, Intel ISTC, NVIDIA, Amazon AWS.

References
[1] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and

accurate deep network learning by exponential linear units
(elus). arXiv preprint arXiv:1511.07289, 2015. 3, 4

[2] R. Girshick. Fast r-cnn. In ICCV, 2015. 1
[3] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-

ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014. 8, 10, 12

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In CVPR, 2015. 10

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 1, 2, 7, 10

[6] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In European Conference on Com-
puter Vision, pages 630–645. Springer, 2016. 7

[7] M. Hein and M. Andriushchenko. Formal guarantees on the
robustness of a classifier against adversarial manipulation. In
NIPS, 2017. 4

[8] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.
Densely connected convolutional networks. In CVPR, 2017.
1

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 7, 11

[10] M. Jones and H. Kobori. Improving face verification and per-
son re-identification accuracy using hyperplane similarity. In
ICCV, 2017. 2

[11] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial ma-
chine learning at scale. arXiv preprint arXiv:1611.01236,
2016. 8, 10

[12] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.
Sphereface: Deep hypersphere embedding for face recogni-
tion. In CVPR, 2017. 2, 8, 10

[13] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax
loss for convolutional neural networks. In ICML, 2016. 2

[14] W. Liu, Y.-M. Zhang, X. Li, Z. Yu, B. Dai, T. Zhao, and
L. Song. Deep hyperspherical learning. In NIPS, 2017. 2, 3,
4, 5, 6, 8, 10

[15] Y. Liu, H. Li, and X. Wang. Rethinking feature discrimina-
tion and polymerization for large-scale recognition. arXiv
preprint arXiv:1710.00870, 2017. 2

[16] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 1

[17] H. N. Mhaskar and C. A. Micchelli. How to choose an acti-
vation function. In NIPS, 1994. 4

[18] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal adversarial perturbations. arXiv
preprint arXiv:1610.08401, 2016. 10

[19] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deep-
fool: a simple and accurate method to fool deep neural net-
works. In CVPR, 2016. 10, 11

[20] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman,
F. Faghri, A. Matyasko, K. Hambardzumyan, Y.-L. Juang,
A. Kurakin, R. Sheatsley, et al. cleverhans v2.0.0:
an adversarial machine learning library. arXiv preprint
arXiv:1610.00768, 2016. 10

[21] R. Ranjan, C. D. Castillo, and R. Chellappa. L2-constrained
softmax loss for discriminative face verification. arXiv
preprint arXiv:1703.09507, 2017. 2

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In
CVPR, 2016. 1

[23] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, 2015. 1

[24] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 1, 2

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015. 1, 2

[26] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013. 10

[27] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. Mc-
Daniel. Ensemble adversarial training: Attacks and defenses.
arXiv preprint arXiv:1705.07204, 2017. 8, 10

[28] F. Wang, W. Liu, H. Liu, and J. Cheng. Additive margin soft-
max for face verification. arXiv preprint arXiv:1801.05599,
2018. 2

[29] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. Normface: l 2
hypersphere embedding for face verification. arXiv preprint
arXiv:1704.06369, 2017. 2

[30] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated
residual transformations for deep neural networks. In CVPR,
2017. 1

[31] Y. Yuan, K. Yang, and C. Zhang. Feature incay for repre-
sentation regularization. arXiv preprint arXiv:1705.10284,
2017. 2

Layer Plain CNN-9 CNN-9 for adversarial attacks ResNet-32 for CIFAR Standard ResNet-18 Modified ResNet-18

Conv0.x N/A N/A [3×3, 96]
[7×7, 64], S2

3×3, Max Pooling, S2
[7×7, 128], S2

3×3, Max Pooling, S2

Conv1.x
[3×3, 64]×3

2×2 Max Pooling, S2
[3×3, 32]×3

2×2 Max Pooling, S2

[
3× 3, 96

3× 3, 96

]
× 5

[
3× 3, 64

3× 3, 64

]
× 2

[3×3, 128]×1, S2[
3× 3, 128

3× 3, 128

]
× 1

Conv2.x
[3×3, 128]×3

2×2 Max Pooling, S2
[3×3, 64]×3

2×2 Max Pooling, S2

[
3× 3, 192

3× 3, 192

]
× 5

[
3× 3, 128

3× 3, 128

]
× 2

[3×3, 256]×1, S2[
3× 3, 256

3× 3, 256

]
× 2

Conv3.x
[3×3, 256]×3

2×2 Max Pooling, S2
[3×3, 128]×3

2×2 Max Pooling, S2

[
3× 3, 384

3× 3, 384

]
× 5

[
3× 3, 256

3× 3, 256

]
× 2

[3×3, 512]×1, S2[
3× 3, 512

3× 3, 512

]
× 3

Conv4.x N/A N/A N/A

[
3× 3, 512

3× 3, 512

]
× 2 [3×3, 1024]×1, S2

Final 512-dim fully connected 256-dim fully connected Average Pooling

Table 9: Our CNN and ResNet architectures with different convolutional layers. Conv0.x, Conv1.x, Conv2.x, Conv3.x and Conv4.x denote convolution units
that may contain multiple convolutional layers, and residual units are shown in double-column brackets. Conv1.x, Conv2.x and Conv3.x usually operate on
different size feature maps. These networks are essentially similar to [5], but with different number of filters in each layer. The downsampling is performed
by convolutions with a stride of 2. E.g., [3×3, 64]×4 denotes 4 cascaded convolution layers with 64 filters of size 3×3, and S2 denotes stride 2.

A. Experimental Details
A.1. General Settings

The network architectures used in the paper are elaborated in Table 9. Due to the limitations of our GPU resources, we
mostly conduct experiments based on plain CNN-9 and ResNet-32 for CIFAR and ResNet-18 for ImageNet. For CIFAR-10
and CIFAR-100, we use ADAM for all the networks including the baseline. For ImageNet-2012, we use the SGD with
momentum 0.9 for all the networks. If not specified, we use the batch normalization by default for all the experiments
on object recognition. For the experiments against adversarial attacks, we use the plain CNN-9. We do not use the batch
normalization for the adversarial attack experiments. All the experiments are implemented using TensorFlow library. We use
the same data augmentation protocol for CIFAR-10, CIFAR-100 and ImageNet-2012 as [14]. For initialization of DCNets
and baselines, we follow [4]. For modified ResNet-18 in ImageNet, we use the same initialization as [12].

Since we are already using optimization tricks on ‖w‖, we propose to replace the orthonormal constraint in [14] with the
proposed orthogonal constraint.

A.2. Details about FGSM and BIM Attacks

Recent studies show that neural networks are prone to adversarial attacks [3, 18, 19, 26]. One of the simplest attacks
is FGSM [3], which computes the adversarial image x̃ of some input image x such that ‖x− x̃‖∞≤ε. FGSM performs
one single step gradient descent (with step size ε) to decrease the probability of the ground truth label. Formally, x̃=
x+εsign(∇xJ(θ, x, y)) where J is the loss function used to train the network, θ represents the network parameters, x is
the input image and y is the ground truth label associated with x. We compare our models and ResNet baseline on the
performance on adversarial examples.

In addition, we evaluate the performance of DCNets and ResNet baselines on BIM (Basic Iterative Method) attack [11].
BIM runs certain number N of iterations of FGSM, with a smaller step size τ . In each iteration, the resulted perturbed image
x̃ is clipped so that ‖x− x̃‖∞ ≤ ε.

We implement the experiments with Cleverhans [20]. In adversarial training using FGSM, ε = 8 is used to generated
the adversarial examples. In all the following adversarial attack experiments, we set ε = 8, τ = 2, N = 20. We report
the accuracy on adversarial examples for both naturally trained models and adversarially trained models using FGSM. The
network architecture is shown in Table 9.

A.3. Details about the Black-box Attacks

[27] shows that adversarially trained models behave significantly different on adversarial examples trained on itself and
transferred adversarial examples. As suggested by [27], we report the resistance of our models against black-box attacks with
ResNet baseline model. Specifically, the adversarial examples are computed from a CNN baseline with the same architecture
as the target models. The generated adversarial examples are then used to attack those target models. The architecture and
the attack parameters are kept the same as in the white-box experiment.

B. Training and Implementation Details
Improved Learning of Operator Radius. To facilitate the learning of the operator radius ρ, we multiply the average

norm of local patch x to ρ. Taking TanhConv as an example, we implement it using the following form:

fd(w,x) = α tanh
(‖x‖
ρ · E{‖x‖}

)
· g(θ(w,x)), (19)

where ρ is learnable and it is initialized by a constant 1. The reason we are multiplying the average norm of ‖x‖ to ρ
comes from our empirical observation that lots of ρ in the middle layers stay unchanged and can not be updated effectively.
Compared to the original formulation, Eq. (19) essentially performs an normalization to ‖x‖ and make its mean become
1 (i.e., E

(‖x‖
E{‖x‖}

)
= 1). This is also the reason we initialize ρ with 1. The gradient of the magnitude function h(·) w.r.t

ρ can be large enough such that ρ is updated effectively. Therefore, for all the decoupled operators that have a learnable
non-zero operator radius ρ (e.g., BallConv, TanhConv, SegConv, etc.), we will multiply E{‖x‖} to ρ in order to facilitate its
learning. In practice, we use the moving average to compute E{‖x‖}, similar to BN [9]. Note that, each kernel will preserve
its independent patch norm mean E{‖x‖}. BallConv is implemented using

fd(w,x) = α · min(‖x‖ , ρ · E{‖x‖})
ρ · E{‖x‖}

· g(θ(w,x)), (20)

and SegConv is implemented using

fd(w,x) =

{
α ‖x‖ · g(θ(w,x)), 0 ≤ ‖x‖ ≤ ρ · E{‖x‖}
(β ‖x‖+ αρ · E{‖x‖} − βρ · E{‖x‖}) · g(θ(w,x)), ρ · E{‖x‖} < ‖x‖

. (21)

Hyperparameter Settings. For SphereConv, we use α = 1. For BallConv, we use α = 1 and a learnable ρ. For
TanhConv, we use α = 1 and a learnable ρ. For LinearConv, we use α = 1. For SegConv, we use α = 1, β = 0.5 and a
learnable ρ. For LogConv, we use α = 1. For MixConv, we use α = 1 and β = 1. For CIFAR experiments, we use 128
batch size for all the networks. For ImageNet experiments, we use 40 batch size for all the networks.

C. More Experiments on Defense against Adversarial Attacks
We also evaluate the robustness of DCNets with the DeepFool attacks [19]. Note that, for all the experiments related to the

adversarial attacks, our network do not use any optimization trick and is trained by original gradients. The results are given
in Fig. 5. The x-axis denotes the index of the 10000 adversarial testing samples, and the y-axis denotes the strength (`2 norm
or `∞ norm) of the perturbations in order to successfully fool the network. We could observe from the results that in order
to fool the DCNets, the DeepFool attacks need to largely perturb the samples while it only takes a much smaller perturbation
to fool the original CNNs. It implies that DCNets are much more difficult to fool. In other words, to fool the DCNets will
take much more efforts than to fool the original CNNs, which shows the superior robustness of DCNets against adversarial
examples.

0 2000 4000 6000 8000 10000
Index of adversarial testing samples

0

10

20

30

40

50

60

70

L2
 n

or
m

 o
f t

he
 p

er
tu

rb
at

io
n DCNet (TanhConv)

Original CNN

0 2000 4000 6000 8000 10000
Index of adversarial testing samples

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

In
f n

or
m

 o
f t

he
 p

er
tu

rb
at

io
n DCNet (TanhConv)

Original CNN

0 2000 4000 6000 8000 10000
Index of adversarial testing samples

0

10

20

30

40

50

60

70

L2
 n

or
m

 o
f t

he
 p

er
tu

rb
at

io
n DCNet (BallConv)

Original CNN

0 2000 4000 6000 8000 10000
Index of adversarial testing samples

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

In
f n

or
m

 o
f t

he
 p

er
tu

rb
at

io
n DCNet (BallConv)

Original CNN

(a) DCNet (TanhConv) vs. original CNN (b) DCNet (BallConv) vs. original CNN

Figure 5: The strength of the adversarial perturbations to fool the network.

D. Feature Visualization on MNIST Dataset
We visualize the 2D feature on MNIST dataset. Specifically, we use a plain CNN with 6 convolutional layers ([3×3,32]×2-

[3×3,64]×2-[3×3,128]×2) and 3 fully connected layers (256-2-10). Note that we set the output dimension (i.e., the input

Baseline CNN (Original Convolution) DCNet (SphereConv) DCNet (BallConv) DCNet (TanhConv)

Figure 6: 2D feature visualization on MNIST dataset with natural training.

Baseline CNN (Original Convolution) DCNet (SphereConv) DCNet (BallConv) DCNet (TanhConv)

Figure 7: 2D feature visualization on MNIST dataset with adversarial training.

dimension of the last fully connected layer) as 2 and visualize these 2D features. We evaluate two types of training: natural
training (i.e., trained on the normal MNIST dataset) and adversarial training [3]. Note that, all the networks in this section
are learned by original gradient updates. We do not use weight projection in the networks for the visualization purpose.

Natural Training. We plot the 2D features in Fig. 6. We could observe that DCNets (especially bounded decoupled
operators) exhibit very different distributions with the original CNNs. Empirically, we observe that SphereConv, BallConv
and TanhConv produce very compact and well-grouped features.

Adversarial Training. We also show the 2D features of adversarially trained models of baseline CNN, DCNet (Sphere-
Conv), DCNet (BallConv) and DCNet (TanhConv) in Fig.7. We could see that DCNets are still able to group the features in
a more compact way than the original CNN even with the adversarial training.

E. Filter Visualization on ImageNet-2012

We train larger models with 256 filters in the first layer on ImageNet-2012. We visualize all the filters in the first layer
for these compared methods in Fig. 8. One could see that DCNet with SphereConv learns more sparse filters, while DCNets
with TanhConv and BallConv can learn richer types of filters. Moreover, because we use orthogonality constraints, the filters
are not highly correlated unlike the original CNNs.

DCNet (SphereConv) DCNet (TanhConv) DCNet (BallConv)

Figure 8: Visualized filters from the first layer of DCNets on ImageNet-2012 dataset. Note that, this is learned by original gradient updates. We do not use
weight projection in the networks for the visualization purpose.

F. Experiments on CIFAR-100 (stochastic gradient descent)
Additionally, we optimize the DCNets with stochastic gradient descent (SGD) with momentum and evaluate our models

on CIFAR-100. We use the ResNet-32 architecture. The experimental setting is the same as the CIFAR-100 experiment in
the main paper, except that we use SGD instead of ADAM. the results are given in Table 10. Surprisingly, using SGD could
largely improve the performance of baseline. While optimizing the baseline model using ADAM gives us 26.69% error rate,
optimizing the baseline using SGD gives us 21.55% error rate. Even though the baseline will be greatly improved by SGD,
we still find that our DCNets optimized by SGD are better than the baseline and also perform slightly better than the DCNets
optimized by ADAM.

Method Linear Cosine Sq. Cosine

ResNet Baseline - 21.55 -
SphereConv 21.71 21.61 24.62

BallConv 20.96 21.25 24.40
TanhConv 21.07 21.12 24.29

LinearConv 21.43 21.25 20.54
SegConv 20.58 20.61 20.61
LogConv 21.15 21.42 23.10
MixConv 20.82 21.20 21.19

Table 10: Testing error rate (%) of SGD-trained ResNet-32 on CIFAR-100.

G. Difference between Weighted Gradients and Weight Projection

Δw
Δw

w1 w2θ1

θ2

Figure 9: Illustration of weight update, given fixed ||∆w||. Notice that with ||w1|| < ||w2||, θ1 > θ2.

It is important to point out that the difference between weight projection and weighted gradients. Although weighted
gradients eliminate the effect of normalizing w on the norm of gradients, the increment in angle (i.e. θ(w,x)) is different from
that of weighted projection. Consider the simple case of LinearConv. Denote y = 〈 w

||w|| , x〉. Obviously, the gradient ||∇wy||
is always perpendicular to w. Therefore, the original gradient update is optimizing the angle between w and x. The
modified gradient update ∆w is ∇wy · ||w|| if using weight gradients, and ∇wy if using weight projection.

In the case of weighted gradients, even if all updates ∆w have the same norm, the increment in ‘angle’ ∆θ =
θ(w−α∆w,x)−θ(w,x) can vary, where α is the learning rate. Suppose the norm of the modified gradient ‖∆w‖ = ‖∇wy‖·‖w‖
is fixed. ∆θ can be ignored if ||w|| is large, while close to 90 degrees if ‖w‖ is extremely small. In other words, even if ∆w
is not dependent on ‖w‖, ∆θ is. See Figure 9 for illustration.

In contrast, weighted projection forces the norm of the weights ‖w‖ to be a constant s, so when we have fixed gradient
‖∆w‖, the change of angle ∆θ will also be a constant (because w and ∆w are always perpendicular to each other).

To summarize, weighted gradients make the update of angle ∆θ more “adaptive”, while weight projection makes the
update of angle ∆θ more “fixed”. The major reason for such difference is that the norm of the weights ‖w‖ is fixed to a
constant s in weight projection, while the norm of the weights ‖w‖ is not a constant in weighted gradients. Different ‖w‖
refers to a hypersphere with different radius, as shown in Fig. 9.

